Source: drawable/Point.js

'use strict';


const Rac = require('../Rac');
const utils = require('../util/utils');


/**
* Point in a two dimentional coordinate system.
*
* Several methods will return an adjusted value or perform adjustments in
* their operation when two points are close enough as to be considered
* equal. When the the difference of each coordinate of two points
* is under the `[equalityThreshold]{@link Rac#equalityThreshold}` the
* points are considered equal. The `[equals]{@link Rac.Point#equals}`
* method performs this check.
*
* @alias Rac.Point
*/
class Point{


  /**
  * Creates a new `Point` instance.
  * @param {Rac} rac - Instance to use for drawing and creating other objects
  * @param {number} x - The x coordinate
  * @param {number} y - The y coordinate
  */
  constructor(rac, x, y) {
    utils.assertExists(rac, x, y);
    utils.assertNumber(x, y);

    /**
    * Instance of `Rac` used for drawing and passed along to any created
    * object.
    *
    * @type {Rac}
    */
    this.rac = rac;

    /**
    * X coordinate of the point.
    * @type {number}
    */
    this.x = x;

    /**
    * Y coordinate of the point.
    * @type {number}
    */
    this.y = y;
  }


  /**
  * Returns a string representation intended for human consumption.
  *
  * @param {number} [digits] - The number of digits to print after the
  * decimal point, when ommited all digits are printed
  * @returns {string}
  */
  toString(digits = null) {
    const xStr = utils.cutDigits(this.x, digits);
    const yStr = utils.cutDigits(this.y, digits);
    return `Point(${xStr},${yStr})`;
  }


  /**
  * Returns `true` when the difference with `otherPoint` for each coordinate is
  * under `{@link Rac#equalityThreshold}`, otherwise returns `false`.
  *
  * When `otherPoint` is any class other that `Rac.Point`, returns `false`.
  *
  * Values are compared using `{@link Rac#equals}`.
  *
  * @param {Rac.Point} otherPoint - A `Point` to compare
  * @returns {boolean}
  * @see Rac#equals
  */
  equals(otherPoint) {
    return otherPoint instanceof Point
      && this.rac.equals(this.x, otherPoint.x)
      && this.rac.equals(this.y, otherPoint.y);
  }


  /**
  * Returns a new `Point` with `x` set to `newX`.
  * @param {number} newX - The x coordinate for the new `Point`
  * @returns {Rac.Point}
  */
  withX(newX) {
    return new Point(this.rac, newX, this.y);
  }


  /**
  * Returns a new `Point` with `x` set to `newX`.
  * @param {number} newY - The y coordinate for the new `Point`
  * @returns {Rac.Point}
  */
  withY(newY) {
    return new Point(this.rac, this.x, newY);
  }


  /**
  * Returns a new `Point` with `x` added to `this.x`.
  * @param {number} x - The x coordinate to add
  * @returns {Rac.Point}
  */
  addX(x) {
    return new Point(this.rac,
      this.x + x, this.y);
  }


  /**
  * Returns a new `Point` with `y` added to `this.y`.
  * @param {number} y - The y coordinate to add
  * @returns {Rac.Point}
  */
  addY(y) {
    return new Point(this.rac,
      this.x, this.y + y);
  }


  /**
  * Returns a new `Point` by adding the components of `point` to `this`.
  * @param {Rac.Point} point - A `Point` to add
  * @returns {Rac.Point}
  */
  addPoint(point) {
    return new Point(
      this.rac,
      this.x + point.x,
      this.y + point.y);
  }


  /**
  * Returns a new `Point` by adding the `x` and `y` components to `this`.
  * @param {number} x - The x coodinate to add
  * @param {number} y - The y coodinate to add
  * @returns {Rac.Point}
  */
  add(x, y) {
    return new Point(this.rac,
      this.x + x, this.y + y);
  }


  /**
  * Returns a new `Point` by subtracting the components of `point`.
  * @param {Rac.Point} point - A `Point` to subtract
  * @returns {Rac.Point}
  */
  subtractPoint(point) {
    return new Point(
      this.rac,
      this.x - point.x,
      this.y - point.y);
  }


  /**
  * Returns a new `Point` by subtracting the `x` and `y` components.
  * @param {number} x - The x coodinate to subtract
  * @param {number} y - The y coodinate to subtract
  * @returns {Rac.Point}
  */
  subtract(x, y) {
    return new Point(
      this.rac,
      this.x - x,
      this.y - y);
  }


  /**
  * Returns a new `Point` with the negative coordinate values of `this`.
  * @returns {Rac.Point}
  */
  negative() {
    return new Point(this.rac, -this.x, -this.y);
  }


  /**
  * Returns the distance from `this` to `point`, or returns `0` when
  * `this` and `point` are considered [equal]{@link Rac.Point#equals}.
  *
  * @param {Rac.Point} point - A `Point` to measure the distance to
  * @returns {number}
  * @see Rac.Point#equals
  */
  distanceToPoint(point) {
    if (this.equals(point)) {
      return 0;
    }
    const x = Math.pow((point.x - this.x), 2);
    const y = Math.pow((point.y - this.y), 2);
    return Math.sqrt(x+y);
  }


  /**
  * Returns the angle from `this` to `point`.
  *
  * When `this` and `point` are considered
  * [equal]{@link Rac.Point#equals}, returns the angle produced with
  * `defaultAngle`.
  *
  * @param {Rac.Point} point - A `Point` to measure the angle to
  * @param {Rac.Angle|number} [defaultAngle=instance.Angle.Zero] -
  * An `Angle` to return when `this` and `point` are equal
  * @returns {Rac.Angle}
  * @see Rac.Point#equals
  */
  angleToPoint(point, defaultAngle = this.rac.Angle.zero) {
    if (this.equals(point)) {
      defaultAngle = this.rac.Angle.from(defaultAngle);
      return defaultAngle;
    }
    const offset = point.subtractPoint(this);
    const radians = Math.atan2(offset.y, offset.x);
    return Rac.Angle.fromRadians(this.rac, radians);
  }


  /**
  * Returns a new `Point` at a `distance` from `this` in the direction of
  * `angle`.
  *
  * @param {Rac.Angle|number} angle - An `Angle` towars the new `Point`
  * @param {number} distance - The distance to the new `Point`
  * @returns {Rac.Point}
  */
  pointToAngle(angle, distance) {
    angle = this.rac.Angle.from(angle);
    const distanceX = distance * Math.cos(angle.radians());
    const distanceY = distance * Math.sin(angle.radians());
    return new Point(this.rac, this.x + distanceX, this.y + distanceY);
  }


  /**
  * Returns a new `Ray` from `this` towards `angle`.
  * @param {Rac.Angle|number} angle - The `Angle` of the new `Ray`
  * @returns {Rac.Ray}
  */
  ray(angle) {
    angle = this.rac.Angle.from(angle);
    return new Rac.Ray(this.rac, this, angle);
  }


  /**
  * Returns a new `Ray` from `this` towards `point`.
  *
  * When `this` and `point` are considered equal, the new `Ray` will use
  * the angle produced with `defaultAngle`.
  *
  * @param {Rac.Point} point - A `Point` to point the `Ray` towards
  * @param {Rac.Angle|number} [defaultAngle=instance.Angle.Zero] -
  * An `Angle` to use when `this` and `point` are equal
  * @returns {Rac.Ray}
  */
  rayToPoint(point, defaultAngle = this.rac.Angle.zero) {
    defaultAngle = this.angleToPoint(point, defaultAngle);
    return new Rac.Ray(this.rac, this, defaultAngle);
  }


  /**
  * Returns a new `Ray` from `this` to the projection of `this` in `ray`.
  *
  * When the projected point is equal to `this` the produced ray will have
  * an angle perpendicular to `ray` in the clockwise direction.
  *
  * @param {Rac.Ray} ray - A `Ray` to project `this` onto
  * @returns {Rac.Ray}
  */
  rayToProjectionInRay(ray) {
    const projected = ray.pointProjection(this);
    const perpendicular = ray.angle.perpendicular();
    return this.rayToPoint(projected, perpendicular);
  }


  /**
  * @summary
  * Returns a new `Ray` that starts at `this` and is tangent to `arc`, when
  * no tangent is possible returns `null`.
  *
  * @description
  * The new `Ray` will be in the `clockwise` side of the ray formed
  * from `this` towards `arc.center`. `arc` is considered a complete
  * circle.
  *
  * When `this` is inside `arc` no tangent segment is possible and `null`
  * is returned.
  *
  * A special case is considered when `arc.radius` is considered to be `0`
  * and `this` is equal to `arc.center`. In this case the angle between
  * `this` and `arc.center` is assumed to be the inverse of `arc.start`,
  * thus the new `Ray` will have an angle perpendicular to
  * `arc.start.inverse()`, in the `clockwise` orientation.
  *
  * @param {Rac.Arc} arc - An `Arc` to calculate a tangent to, considered
  * as a complete circle
  * @param {boolean} [clockwise=true] - the orientation of the new `Ray`
  * @return {Rac.Ray?}
  */
  rayTangentToArc(arc, clockwise = true) {
    // A default angle is given for the edge case of a zero-radius arc
    let hypotenuse = this.segmentToPoint(arc.center, arc.start.inverse());
    let ops = arc.radius;

    if (this.rac.equals(hypotenuse.length, arc.radius)) {
      // Point in arc
      const perpendicular = hypotenuse.ray.angle.perpendicular(clockwise);
      return new Rac.Ray(this.rac, this, perpendicular);
    }

    if (this.rac.equals(hypotenuse.length, 0)) {
      return null;
    }

    let angleSine = ops / hypotenuse.length;
    if (angleSine > 1) {
      // Point inside arc
      return null;
    }

    let angleRadians = Math.asin(angleSine);
    let opsAngle = Rac.Angle.fromRadians(this.rac, angleRadians);
    let shiftedOpsAngle = hypotenuse.angle().shift(opsAngle, clockwise);

    return new Rac.Ray(this.rac, this, shiftedOpsAngle);
  }


  /**
  * Returns a new `Segment` from `this` towards `angle` with the given
  * `length`.
  *
  * @param {Rac.Angle|number} angle - An `Angle` to point the segment
  * towards
  * @param {number} length - The length of the new `Segment`
  * @returns {Rac.Segment}
  */
  segmentToAngle(angle, length) {
    angle = this.rac.Angle.from(angle);
    const ray = new Rac.Ray(this.rac, this, angle);
    return new Rac.Segment(this.rac, ray, length);
  }


  /**
  * Returns a new `Segment` from `this` to `point`.
  *
  * When `this` and `point` are considered [equal]{@link Rac.Point#equals},
  * the new `Segment` will use the angle produced with `defaultAngle`.
  *
  * @param {Rac.Point} point - A `Point` to point the `Segment` towards
  * @param {Rac.Angle|number} [defaultAngle=instance.Angle.Zero] -
  * An `Angle` to use when `this` and `point` are equal
  * @returns {Rac.Segment}
  * @see Rac.Point#equals
  */
  segmentToPoint(point, defaultAngle = this.rac.Angle.zero) {
    defaultAngle = this.angleToPoint(point, defaultAngle);
    const length = this.distanceToPoint(point);
    const ray = new Rac.Ray(this.rac, this, defaultAngle);
    return new Rac.Segment(this.rac, ray, length);
  }


  /**
  * Returns a new `Segment` from `this` to the projection of `this` in
  * `ray`.
  *
  * When the projected point is equal to `this`, the new `Segment` will
  * have an angle perpendicular to `ray` in the clockwise direction.
  *
  * @param {Rac.Ray} ray - A `Ray` to project `this` onto
  * @returns {Rac.Segment}
  */
  segmentToProjectionInRay(ray) {
    const projected = ray.pointProjection(this);
    const perpendicular = ray.angle.perpendicular();
    return this.segmentToPoint(projected, perpendicular);
  }


  /**
  * @summary
  * Returns a new `Segment` that starts at `this` and is tangent to `arc`,
  * when no tangent is possible returns `null`.
  *
  * @description
  * The new `Segment` will be in the `clockwise` side of the ray formed
  * from `this` towards `arc.center`, and its end point will be at the
  * contact point with `arc` which is considered as a complete circle.
  *
  * When `this` is inside `arc` no tangent segment is possible and `null`
  * is returned.
  *
  * A special case is considered when `arc.radius` is considered to be `0`
  * and `this` is equal to `arc.center`. In this case the angle between
  * `this` and `arc.center` is assumed to be the inverse of `arc.start`,
  * thus the new `Segment` will have an angle perpendicular to
  * `arc.start.inverse()`, in the `clockwise` orientation.
  *
  * @param {Rac.Arc} arc - An `Arc` to calculate a tangent to, considered
  * as a complete circle
  * @param {boolean} [clockwise=true] - the orientation of the new `Segment`
  * @return {Rac.Segment?}
  */
  segmentTangentToArc(arc, clockwise = true) {
    const tangentRay = this.rayTangentToArc(arc, clockwise);
    if (tangentRay === null) {
      return null;
    }

    const tangentPerp = tangentRay.angle.perpendicular(clockwise);
    const radiusRay = arc.center.ray(tangentPerp);

    return tangentRay.segmentToIntersection(radiusRay);
  }


  /**
  * Returns a new `Arc` with center at `this` and the given arc properties.
  *
  * @param {number} radius - The radius of the new `Arc`
  * @param {Rac.Angle|number} [someStart=rac.Angle.zero] - The start
  * `Angle` of the new `Arc`
  * @param {?Rac.Angle|number} [someEnd=null] - The end `Angle` of the new
  * `Arc`; when `null` or ommited, `start` is used instead
  * @param {boolean=} clockwise=true - The orientation of the new `Arc`
  * @returns {Rac.Arc}
  */
  arc(
    radius,
    start = this.rac.Angle.zero,
    end = null,
    clockwise = true)
  {
    start = this.rac.Angle.from(start);
    end = end === null
      ? start
      : this.rac.Angle.from(end);
    return new Rac.Arc(this.rac, this, radius, start, end, clockwise);
  }


  /**
  * Returns a new `Text` with the given `string` and `format`.
  * @param {string} string - The string of the new `Text`
  * @param {Rac.Text.Format} format - The format of the new `Text`
  * @returns {Rac.Text}
  */
  text(string, format) {
    return new Rac.Text(this.rac, this, string, format);
  }

} // class Point


module.exports = Point;