Source: drawable/Ray.js

'use strict';


const Rac = require('../Rac');
const utils = require('../util/utils');


/**
* Unbounded ray from a `[Point]{@link Rac.Point}` in direction of an
* `[Angle]{@link Rac.Angle}`.
*
* @alias Rac.Ray
*/
class Ray {

  /**
  * Creates a new `Ray` instance.
  * @param {Rac} rac Instance to use for drawing and creating other objects
  * @param {Rac.Point} start - A `Point` where the ray starts
  * @param {Rac.Angle} angle - An `Angle` the ray is directed to
  */
  constructor(rac, start, angle) {
    utils.assertExists(rac, start, angle);
    utils.assertType(Rac.Point, start);
    utils.assertType(Rac.Angle, angle);

    /**
    * Instance of `Rac` used for drawing and passed along to any created
    * object.
    *
    * @type {Rac}
    */
    this.rac = rac;

    /**
    * The start point of the ray.
    * @type {Rac.Point}
    */
    this.start = start;

    /**
    * The angle towards which the ray extends.
    * @type {Rac.Angle}
    */
    this.angle = angle;
  }


  /**
  * Returns a string representation intended for human consumption.
  *
  * @param {number} [digits] - The number of digits to print after the
  * decimal point, when ommited all digits are printed
  * @returns {string}
  */
  toString(digits = null) {
    const xStr = utils.cutDigits(this.start.x, digits);
    const yStr = utils.cutDigits(this.start.y, digits);
    const turnStr = utils.cutDigits(this.angle.turn, digits);
    return `Ray((${xStr},${yStr}) a:${turnStr})`;
  }


  /**
  * Returns `true` when `start` and `angle` in both rays are equal;
  * otherwise returns `false`.
  *
  * When `otherRay` is any class other that `Rac.Ray`, returns `false`.
  *
  * @param {Rac.Ray} otherRay - A `Ray` to compare
  * @returns {boolean}
  * @see Rac.Point#equals
  * @see Rac.Angle#equals
  */
  equals(otherRay) {
    return otherRay instanceof Ray
      && this.start.equals(otherRay.start)
      && this.angle.equals(otherRay.angle);
  }


  /**
  * Returns the slope of the ray, or `null` if the ray is vertical.
  *
  * In the line formula `y = mx + b` the slope is `m`.
  *
  * @returns {?number}
  */
  slope() {
    let isVertical =
         this.rac.unitaryEquals(this.angle.turn, this.rac.Angle.down.turn)
      || this.rac.unitaryEquals(this.angle.turn, this.rac.Angle.up.turn);
    if (isVertical) {
      return null;
    }

    return Math.tan(this.angle.radians());
  }


  /**
  * Returns the y-intercept: the point at which the ray, extended in both
  * directions, intercepts with the y-axis; or `null` if the ray is
  * vertical.
  *
  * In the line formula `y = mx + b` the y-intercept is `b`.
  *
  * @returns {?number}
  */
  yIntercept() {
    let slope = this.slope();
    if (slope === null) {
      return null;
    }
    // y = mx + b
    // y - mx = b
    return this.start.y - slope * this.start.x;
  }


  /**
  * Returns a new `Ray` with `start` set to `newStart`.
  *
  * All other properties are copied from `this`.
  *
  * @param {Rac.Point} newStart - The start for the new `Ray`
  * @returns {Rac.Ray}
  */
  withStart(newStart) {
    return new Ray(this.rac, newStart, this.angle);
  }


  /**
  * Returns a new `Ray` with `start.x` set to `newX`.
  *
  * All other properties are copied from `this`.
  *
  * @param {number} newX - The x coordinate for the new `Ray`
  * @returns {Rac.Ray}
  */
  withX(newX) {
    return new Ray(this.rac, this.start.withX(newX), this.angle);
  }


  /**
  * Returns a new `Ray` with `start.y` set to `newY`.
  *
  * All other properties are copied from `this`.
  *
  * @param {number} newY - The y coordinate for the new `Ray`
  * @returns {Rac.Ray}
  */
  withY(newY) {
    return new Ray(this.rac, this.start.withY(newY), this.angle);
  }


  /**
  * Returns a new `Ray` with `angle` set to `newAngle`.
  *
  * All other properties are copied from `this`.
  *
  * @param {Rac.Angle|number} newAngle - The angle for the new `Ray`
  * @returns {Rac.Ray}
  */
  withAngle(newAngle) {
    newAngle = this.rac.Angle.from(newAngle);
    return new Ray(this.rac, this.start, newAngle);
  }


  /**
  * Returns a new `Ray` with `angle` added to `this.angle`.
  *
  * All other properties are copied from `this`.
  *
  * @param {Rac.Angle|number} angle - The angle to add
  * @returns {Rac.Ray}
  */
  withAngleAdd(angle) {
    let newAngle = this.angle.add(angle);
    return new Ray(this.rac, this.start, newAngle);
  }


  /**
  * Returns a new `Ray` with `angle` set to
  * `this.{@link Rac.Angle#shift angle.shift}(angle, clockwise)`.
  *
  * All other properties are copied from `this`.
  *
  * @param {Rac.Angle|number} angle - The angle to be shifted by
  * @param {boolean} [clockwise=true] - The orientation of the shift
  * @returns {Rac.Ray}
  */
  withAngleShift(angle, clockwise = true) {
    let newAngle = this.angle.shift(angle, clockwise);
    return new Ray(this.rac, this.start, newAngle);
  }


  /**
  * Returns a new `Ray` pointing towards
  * `{@link Rac.Angle#inverse angle.inverse()}`.
  * @returns {Rac.Ray}
  */
  inverse() {
    const inverseAngle = this.angle.inverse();
    return new Ray(this.rac, this.start, inverseAngle);
  }


  /**
  * Returns a new `Ray` pointing towards the
  * [perpendicular angle]{@link Rac.Angle#perpendicular} of
  * `angle` in the `clockwise` orientation.
  *
  * @param {boolean} [clockwise=true] - The orientation of the perpendicular
  * @returns {Rac.Ray}
  * @see Rac.Angle#perpendicular
  */
  perpendicular(clockwise = true) {
    let perpendicular = this.angle.perpendicular(clockwise);
    return new Ray(this.rac, this.start, perpendicular);
  }


  /**
  * Returns a new `Ray` with `start` moved along the ray by the given
  * `distance`. All other properties are copied from `this`.
  *
  * When `distance` is negative, `start` is moved in
  * the inverse direction of `angle`.
  *
  * @param {number} distance - The distance to move `start` by
  * @returns {Rac.Ray}
  */
  translateToDistance(distance) {
    const newStart = this.start.pointToAngle(this.angle, distance);
    return new Ray(this.rac, newStart, this.angle);
  }


  /**
  * Returns a new `Ray` with `start` moved towards `angle` by the given
  * `distance`. All other properties are copied from `this`.
  *
  * @param {Rac.Angle|number} angle - An `Angle` to move `start` towards
  * @param {number} distance - The distance to move `start` by
  * @returns {Rac.Ray}
  */
  translateToAngle(angle, distance) {
    const newStart = this.start.pointToAngle(angle, distance);
    return new Ray(this.rac, newStart, this.angle);
  }


  /**
  * Returns a new `Ray` with `start` moved by the given distance toward the
  * `angle.perpendicular()`. All other properties are copied from `this`.
  *
  * @param {number} distance - The distance to move `start` by
  * @param {boolean} [clockwise=true] - The orientation of the perpendicular
  * @returns {Rac.Ray}
  */
  translatePerpendicular(distance, clockwise = true) {
    let perpendicular = this.angle.perpendicular(clockwise);
    return this.translateToAngle(perpendicular, distance);
  }


  /**
  * Returns the angle from `this.start` to `point`.
  *
  * When `this.start` and `point` are considered
  * [equal]{@link Rac.Point#equals}, returns `this.angle`.
  *
  * @param {Rac.Point} point - A `Point` to measure the angle to
  * @returns {Rac.Angle}
  * @see Rac.Point#equals
  */
  angleToPoint(point) {
    return this.start.angleToPoint(point, this.angle);
  }


  /**
  * Returns a new `Point` located in the ray where the x coordinate is `x`.
  * When the ray is vertical, returns `null` since no single point with x
  * coordinate at `x` is possible.
  *
  * The ray is considered a unbounded line.
  *
  * @param {number} x - The x coordinate to calculate a point in the ray
  * @returns {Rac.Point}
  */
  pointAtX(x) {
    const slope = this.slope();
    if (slope === null) {
      // Vertical ray
      return null;
    }

    if (this.rac.unitaryEquals(slope, 0)) {
      // Horizontal ray
      return this.start.withX(x);
    }

    // y = mx + b
    const y = slope * x + this.yIntercept();
    return new Rac.Point(this.rac, x, y);
  }


  /**
  * Returns a new `Point` located in the ray where the y coordinate is `y`.
  * When the ray is horizontal, returns `null` since no single point with y
  * coordinate at `y` is possible.
  *
  * The ray is considered an unbounded line.
  *
  * @param {number} y - The y coordinate to calculate a point in the ray
  * @retursn {Rac.Point}
  */
  pointAtY(y) {
    const slope = this.slope();
    if (slope === null) {
      // Vertical ray
      return this.start.withY(y);
    }

    if (this.rac.unitaryEquals(slope, 0)) {
      // Horizontal ray
      return null;
    }

    // mx + b = y
    // x = (y - b)/m
    const x = (y - this.yIntercept()) / slope;
    return new Rac.Point(this.rac, x, y);
  }


  /**
  * Returns a new `Point` in the ray at the given `distance` from
  * `this.start`. When `distance` is negative, the new `Point` is calculated
  * in the inverse direction of `angle`.
  *
  * @param {number} distance - The distance from `this.start`
  * @returns {Rac.Point}
  */
  pointAtDistance(distance) {
    return this.start.pointToAngle(this.angle, distance);
  }


  /**
  * Returns a new `Point` at the intersection of `this` and `otherRay`.
  *
  * When the rays are parallel, returns `null` since no intersection is
  * possible.
  *
  * Both rays are considered unbounded lines.
  *
  * @param {Rac.Ray} otherRay - A `Ray` to calculate the intersection with
  * @returns {Rac.Point}
  */
  pointAtIntersection(otherRay) {
    const a = this.slope();
    const b = otherRay.slope();
    // Parallel lines, no intersection
    if (a === null && b === null) { return null; }
    if (this.rac.unitaryEquals(a, b)) { return null; }

    // Any vertical ray
    if (a === null) { return otherRay.pointAtX(this.start.x); }
    if (b === null) { return this.pointAtX(otherRay.start.x); }

    const c = this.yIntercept();
    const d = otherRay.yIntercept();

    // https://en.wikipedia.org/wiki/Line%E2%80%93line_intersection
    const x = (d - c) / (a - b);
    const y = a * x + c;
    return new Rac.Point(this.rac, x, y);
  }


  /**
  * Returns a new `Point` at the projection of `point` onto the ray. The
  * projected point is the closest possible point to `point`.
  *
  * The ray is considered an unbounded line.
  *
  * @param {Rac.Point} point - A `Point` to project onto the ray
  * @returns {Rac.Point}
  */
  pointProjection(point) {
    const perpendicular = this.angle.perpendicular();
    return point.ray(perpendicular)
      .pointAtIntersection(this);
  }


  /**
  * Returns the distance from `this.start` to the projection of `point`
  * onto the ray.
  *
  * The returned distance is positive when the projected point is towards
  * the direction of the ray, and negative when it is behind.
  *
  * @param {Rac.Point} point - A `Point` to project and measure the
  * distance to
  * @returns {number}
  */
  distanceToProjectedPoint(point) {
    const projected = this.pointProjection(point);
    const distance = this.start.distanceToPoint(projected);

    if (this.rac.equals(distance, 0)) {
      return 0;
    }

    const angleToProjected = this.start.angleToPoint(projected);
    const angleDiff = this.angle.subtract(angleToProjected);
    if (angleDiff.turn <= 1/4 || angleDiff.turn > 3/4) {
      return distance;
    } else {
      return -distance;
    }
  }


  /**
  * Returns `true` when the angle to the given `point` is located clockwise
  * of the ray or `false` when located counter-clockwise.
  *
  * * When `this.start` and `point` are considered
  * [equal]{@link Rac.Point#equals} or `point` lands on the ray, it is
  * considered clockwise. When `point` lands on the
  * [inverse]{@link Rac.Ray#inverse} of the ray, it is considered
  * counter-clockwise.
  *
  * @param {Rac.Point} point - A `Point` to measure the orientation to
  * @returns {boolean}
  *
  * @see Rac.Point#equals
  * @see Rac.Ray#inverse
  */
  pointOrientation(point) {
    const pointAngle = this.start.angleToPoint(point, this.angle);
    if (this.angle.equals(pointAngle)) {
      return true;
    }

    const angleDistance = pointAngle.subtract(this.angle);
    // [0 to 0.5) is considered clockwise
    // [0.5, 1) is considered counter-clockwise
    return angleDistance.turn < 0.5;
  }


  /**
  * Returns a new `Ray` from `this.start` to `point`.
  *
  * When `this.start` and `point` are considered
  * [equal]{@link Rac.Point#equals}, the new `Ray` will use `this.angle`.
  *
  * @param {Rac.Point} point - A `Point` to point the `Ray` towards
  * @returns {Rac.Ray}
  * @see Rac.Point#equals
  */
  rayToPoint(point) {
    let newAngle = this.start.angleToPoint(point, this.angle);
    return new Ray(this.rac, this.start, newAngle);
  }


  /**
  * Returns a new `Segment` using `this` and the given `length`.
  * @param {number} length - The length of the new `Segment`
  * @returns {Rac.Segment}
  */
  segment(length) {
    return new Rac.Segment(this.rac, this, length);
  }


  /**
  * Returns a new `Segment` from `this.start` to `point`.
  *
  * When `this.start` and `point` are considered
  * [equal]{@link Rac.Point#equals}, the new `Segment` will use
  * `this.angle`.
  *
  * @param {Rac.Point} point - A `Point` to point the `Segment` towards
  * @returns {Rac.Segment}
  * @see Rac.Point#equals
  */
  segmentToPoint(point) {
    return this.start.segmentToPoint(point, this.angle);
  }


  /**
  * Returns a new `Segment` starting at `this.start` and ending at the
  * intersection of `this` and `otherRay`.
  *
  * When the rays are parallel, returns `null` since no intersection is
  * possible.
  *
  * When `this.start` and the intersection point are considered
  * [equal]{@link Rac.Point#equals}, the new `Segment` will use
  * `this.angle`.
  *
  * Both rays are considered unbounded lines.
  *
  * @param {Rac.Ray} otherRay - A `Ray` to calculate the intersection with
  * @returns {Rac.Segment}
  */
  segmentToIntersection(otherRay) {
    const intersection = this.pointAtIntersection(otherRay);
    if (intersection === null) {
      return null;
    }
    return this.segmentToPoint(intersection);
  }


  /**
  * Returns a new `Arc` with center at `this.start`, start at `this.angle`
  * and the given arc properties.
  *
  * @param {number} radius - The radius of the new `Arc`
  * @param {?Rac.Angle|number} [endAngle=null] - The end `Angle` of the new
  * `Arc`; when `null` or ommited, `this.angle` is used instead
  * @param {boolean=} clockwise=true - The orientation of the new `Arc`
  * @returns {Rac.Arc}
  */
  arc(radius, endAngle = null, clockwise = true) {
    endAngle = endAngle === null
      ? this.angle
      : this.rac.Angle.from(endAngle);
    return new Rac.Arc(this.rac,
      this.start, radius,
      this.angle, endAngle,
      clockwise);
  }


  /**
  * Returns a new `Arc` with center at `this.start`, start at `this.angle`,
  * and end at the given `angleDistance` from `this.start` in the
  * `clockwise` orientation.
  *
  * @param {number} radius - The radius of the new `Arc`
  * @param {Rac.Angle|number} angleDistance - The angle distance from
  * `this.start` to the new `Arc` end
  * @param {boolean} [clockwise=true] - The orientation of the new `Arc`
  * @returns {Rac.Arc}
  */
  arcToAngleDistance(radius, angleDistance, clockwise = true) {
    let endAngle = this.angle.shift(angleDistance, clockwise);
    return new Rac.Arc(this.rac,
      this.start, radius,
      this.angle, endAngle,
      clockwise);
  }


  // TODO: Leaving undocumented for now, until better use/explanation is found
  // based on https://stackoverflow.com/questions/1734745/how-to-create-circle-with-b%C3%A9zier-curves
  bezierArc(otherRay) {
    if (this.start.equals(otherRay.start)) {
      // When both rays have the same start, returns a point bezier.
      return new Rac.Bezier(this.rac,
        this.start, this.start,
        this.start, this.start);
    }

    let intersection = this.perpendicular()
      .pointAtIntersection(otherRay.perpendicular());

    let orientation = null;
    let radiusA = null;
    let radiusB = null;

    // Check for parallel rays
    if (intersection !== null) {
      // Normal intersection case
      orientation = this.pointOrientation(intersection);
      radiusA = intersection.segmentToPoint(this.start);
      radiusB = intersection.segmentToPoint(otherRay.start);

    } else {
      // In case of parallel rays, otherRay gets shifted to be
      // perpendicular to this.
      let shiftedIntersection = this.perpendicular()
        .pointAtIntersection(otherRay);
      if (shiftedIntersection === null || this.start.equals(shiftedIntersection)) {
        // When both rays lay on top of each other, the shifting produces
        // rays with the same start; function returns a linear bezier.
        return new Rac.Bezier(this.rac,
          this.start, this.start,
          otherRay.start, otherRay.start);
      }
      intersection = this.start.pointAtBisector(shiftedIntersection);

      // Case for shifted intersection between two rays
      orientation = this.pointOrientation(intersection);
      radiusA = intersection.segmentToPoint(this.start);
      radiusB = radiusA.inverse();
    }

    const angleDistance = radiusA.angle().distance(radiusB.angle(), orientation);
    const quarterAngle = angleDistance.mult(1/4);
    // TODO: what happens with square angles? is this covered by intersection logic?
    const quarterTan = quarterAngle.tan();

    const tangentA = quarterTan * radiusA.length * 4/3;
    const anchorA = this.pointAtDistance(tangentA);

    const tangentB = quarterTan * radiusB.length * 4/3;
    const anchorB = otherRay.pointAtDistance(tangentB);

    return new Rac.Bezier(this.rac,
        this.start, anchorA,
        anchorB, otherRay.start);
  }

} // class Ray


module.exports = Ray;